
Object-Oriented Design

 Need - 1

OBJECT-ORIENTED DESIGN
THE NEED

●● When New Technology Emerges ●● Relevant Revolutions

●● New Tools ●● Performance Hits

●● Tools - Compensating for Bugs ●● Improving Performance

●● Evolutions ●● Each Revolution

●● Chain of Events ●● OOP and Complexity

●● Common Fear ●● Payoff

●● Perspective

Object-Oriented Design

 Need - 2

WHEN NEW TECHNOLOGY EMERGES

Old New

Old New

Old New

Old New

Hardware Software

Cost
$

Cost
$

Performance Complexity

Object-Oriented Design

 Need - 3

NEW TOOLS

Bug Bug Bug Bug Bug Bug Bug Bug

Bug Bug

Compiler
Version N

Compiler
Version N+1

Some Old Bugs Fixed Some New Bugs Introduced

Object-Oriented Design

 Need - 4

TOOLS - COMPENSATING FOR BUGS

Compiler A

Compiler B

Source Code

Object
Code A

Object
Code B

Two or more compilers:

●● can be used to check each
other

●● can be used as ammo when
support is called

Object-Oriented Design

 Need - 5

EVOLUTIONS

Process B

Emerges

Process C

Emerges

Using A

Using A+B+C

Using A+B

Time

The promoters of new developments often start with hype:

●● They promise incredible productivity improvements.

●● They predict the imminent demise of all older styles of programming.

●● They hint that old-timers will be replaced by trained newcomers.

On the whole, the promoters are wrong!

The problem with being a zealot:

●● If you are right, the world will little note nor long remember it.

●● If you are wrong, you will never live it down.

Object-Oriented Design

 Need - 6

CHAIN OF EVENTS
1. Zealots preach and practice new techniques while the practitioners wait

and watch.

2. What the zealots did right became apparent eventually; what they did
wrong also became apparent.

3. The practitioners kept the good bits and discarded the rest.

✫✫
✫✫

✫✫
✫✫

✫✫

✫✫
✫✫

✫✫
✫✫

✫✫ ✫✫

✫✫

✫✫
✫✫

✫✫

Mature, Good Ideas New Ideas
New,Good
Ideas

New,Good
Ideas

Software Engineering Object-Oriented Design

●● Structured Programming

●● Diagrams as Notation

●● Object Model

●● Spiral Model

Object-Oriented Design

 Need - 7

A COMMON FEAR
We will become obsolete.

Do not fear if:

●● you balance conservatism with flexibility

●● you watch, wait, and know how long to wait

●● you then try the best ideas first

Keep the faith:

●● Realize what you are getting done with your current tools.

●● Compare your productivity today with that of a few years ago.

●● As a result of delivering significant software products with some
reliability, you will always be asked to do more ambitious jobs.

We are suffering from success, not failure.

Object-Oriented Design

 Need - 8

LET'S PUT
OBJECT-ORIENTED PROGRAMMING

IN PERSPECTIVE!

Object-Oriented Design

 Need - 9

RELEVANT REVOLUTIONS
●● 1960-85: Higher level languages displace assembly languages.

●● 1965-80: Structured programming improves the way we wright higher
level languages.

●● 1970-80: Modular programming replaces monolithic programming.

●● 1975-80: Structured design improves the way we modularize programs.

●● 1980-90: Structured analysis improves the way we identify and group
modules.

●● 1985-??: Object-oriented design and programming introduce a new way
of grouping modules and data.

Note that the starting dates are every 5 years:

1. A few years are required to digest the approach.

2. Time is needed to rest and regroup, getting ready for the next new idea.

3. Earlier revolutions took longer to settle than the new ones - they reflect the
accelerating pace of software technology and maturity.

Object-Oriented Design

 Need - 10

PERFORMANCE HITS
A COMMON EARLY PROBLEM

●● Early compilers often produced code 2 to 10 times slower than assembly
language. Today's compilers occasionally do better than hand-crafted
code.

●● Early structured programs were often larger and occasionally slower than
unstructured programs. Better control statements in modern languages
and better compilers have eliminated this concern.

●● Modular programming introduces numerous function calls. These were
expensive on many architectures of the 1960's. Modern architectures have
all but eliminated the penalty of calling numerous functions.

●● Structured design adds even more functions. On newer machines with
virtual memory, however, it actually improves performance by improving
locality of reference.

●● Structured analysis narrows interfaces and, subsequently, increases
argument passing. Again, improved architectures eliminate most of this
penalty.

Object-Oriented Design

 Need - 11

IMPROVING PERFORMANCE
ARGUMENT: Object-oriented languages cost too much in performance.

COMMON BELIEF: We pay for our software sophistication by eating more
hardware. Rapid advances in hardware performance subsidize our
taste for more complex programming methods.

This may be true in the short run, but not over the long haul. Early
performance hits often occur because the hardware is unsuitable for
the new way of doing business.

Adapt the architecture to the

discipline, and performance

improves.

The demand for faster and larger computers comes primarily from the
applications, not the tools.

Object-Oriented Design

 Need - 12

EACH REVOLUTION
DOES NOT

OBSOLETE THE PREVIOUS
TECHNOLOGIES!

OOP makes you think of a program as a grouping of objects, but those
objects perform their activities via functions. The newer technology is
still supported by the older technology.

OOP has recently come into its own because of the complexity of our
applications today:

●● We need an additional level of grouping, or abstraction, to handle
more complex problems, and OOP gives us this abstraction.

●● We need to restrict side effects and semantics, and OOP enforces
this restriction.

●● We need better controls on initialization and deinitialization of
segments of a system, and OOP provides this control.

Object-Oriented Design

 Need - 13

OOP AND COMPLEXITY
OOP, then, meets some needs as a system becomes complex. But if the

system is not complex, OOP can get in the way, placing an extra,
perhaps unneeded, layer in the software.

As the programs grow,

1. It becomes harder to remember what is to be done.

2. Subtle usage bugs get introduced.

3. Reliability starts to go down.

We become willing to sacrifice some performance for safety and reliability:

1. We want the compiler to tell us as soon as possible when we are
doing something wrong.

2. We want certain problems to never get into the executable, being
trapped by the compiler long before it gets to the executable.

We want such enforcement with little or no cost in
performance.

Object-Oriented Design

 Need - 14

THE PAYOFF TO ADOPTING OOP
IS WORTH THE EFFORT

PROVIDED YOU DON'T INVEST
TOO MUCH EFFORT.

The trick lies in introducing objects where they really pay off.

Treat OOP as the next discipline to apply when you are
suffering from too much success using what you

already know.

